Isolation of choline monooxygenase (CMO) gene from Salicornia europaea and enhanced salt tolerance of transgenic tobacco with CMO genes.

نویسندگان

  • S Wu
  • Q Su
  • L J An
چکیده

Glycinebetaine (GB) is an osmoprotectant accumulated by certain plants in response to high salinity, drought, and cold stress. Plants synthesize GB via the pathway choline --> betaine aldehyde --> glycinebetaine, and the first step is catalyzed by choline monooxygenase (CMO). In the present study, by using RT-PCR and RLM-RACE, a full-length CMO cDNA (1844 bp) was cloned from a halophyte Salicornia europaea, which showed high homology to other known sequences. In order to identify its function, the ORF of CMO cDNA was inserted into binary vector PBI121 to construct the chimeric plant expression vector PBI121-CMO. Using Agrobacterium (LBA4404) mediation, the recombinant plasmid was transferred into tobacco (Nicotiana tabacum). The PCR, Southern blot and RT-PCR analysis indicated the CMO gene was integrated into the tobacco genome, as well as expressed on the level of transcription. The transgenic tobacco plants were able to survive on MS medium containing 300 mmol/L NaCl and more vigorous than those of wild type with the same concentration salt treatment. In salt-stress conditions, transgenic plants had distinctly higher chlorophyll content and betaine accumulation than that of the control, while relative electrical conductivity of transgenic plants was generally lower. The results suggested the CMO gene transformation could effectively contribute to improving tobacco salt-resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A choline monooxygenase gene promoter from Salicornia europaea increases expression of the beta-glucuronidase gene under abiotic stresses in tobacco (Nicotiana tabacum L.).

A 1312 bp 5' flanking region of Salicornia europaea choline monooxygenase (SeCMO) gene was isolated using the anchored PCR. To investigate the mechanism of regulation for this stress-induced gene, the SeCMO promoter-beta-glucuronidase (GUS) chimeric gene constructs containing five deletions F1, F2, F3, F4 and F5 were introduced into tobacco (Nicotiana tabacum L.) by Agrobacterium-mediated trans...

متن کامل

Transformation of beta-lycopene cyclase genes from Salicornia europaea and Arabidopsis conferred salt tolerance in Arabidopsis and tobacco.

Inhibition of lycopene cyclization decreased the salt tolerance of the euhalophyte Salicornia europaea L. We isolated a β-lycopene cyclase gene SeLCY from S. europaea and transformed it into Arabidopsis with stable expression. Transgenic Arabidopsis on post-germination exhibited enhanced tolerance to oxidative and salt stress. After 8 and 21 d recovery from 200 mM NaCl treatment, transgenic lin...

متن کامل

Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth.

Choline monooxygenase (CMO) catalyzes the committing step in the synthesis of glycine betaine, an osmoprotectant accumulated by many plants in response to salinity and drought. To investigate how these stresses affect CMO expression, a spinach (Spinacia oleracea L., Chenopodiaceae) probe was used to isolate CMO cDNAs from sugar beet (Beta vulgaris L., Chenopodiaceae), a salt- and drought-tolera...

متن کامل

Assessment of salt tolerance in transgenic tobacco (Nicotiana tobacum L.) plants expressing the AUX gene

Transformation of plants using Agrabacterium rhizogenes may affect secondary metabolite production as well as morphological changes. In this study, T-DNA from Ri plasmid in A. rhizogenes carrying pRi15834-PRT35S-GUS was introduced into tobacco leaf segments to initiate development of transformed hairy roots. Plant regeneration from transgenic roots used MS medium, and plants regenerated fro...

متن کامل

Similar regulation patterns of choline monooxygenase, phosphoethanolamine N-methyltransferase and S-adenosyl-L-methionine synthetase in leaves of the halophyte Atriplex nummularia L.

Glycinebetaine (betaine) highly accumulates as a compatible solute in certain plants and has been considered to play a role in the protection from salt stress. The betaine biosynthesis pathway of betaine-accumulating plants involves choline monooxygenase (CMO) as the key enzyme and phosphoethanolamine N-methyltransferase (PEAMT), which require S-adenosyl-L-methionine (SAM) as a methyl donor. SA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Indian journal of biochemistry & biophysics

دوره 47 5  شماره 

صفحات  -

تاریخ انتشار 2010